BOUT GEORGE BOOLE’S CALCULUS OF LOGIC
نویسندگان
چکیده
Проводится разбор и анализ небольшой статьи Джорджа Буля, опубликованной на следующий год после выхода его знаменитой работы «Математический логики». Исследуется вопрос о том, насколько ее можно рассматривать как адекватный репрезентативный обзор логической концепции. Также исследуются математические, экстралогические философские основания логики Буля. Указывается, что математическим основанием системы послужили исследования в области линейных дифференциальных уравнений. Кроме того, основании пионерских открытий лежали произвольные философско-методологическим допущения, которые напрямую не относились к математики. Такими допущениями следует признать некоторую оригинальную психологическую теорию сознания, философию математики, предполагающую существование универсального математического исчисления, некоторые положения логико-философской концепции И. Канта In the present paper, small article by George Boole, published next year after publication of his famous work The Mathematical Analysis Logic, is analyzed. We discuss to what extent it can be considered as an adequate and representative overview logical views. mathematical, extralogical philosophical foundations Boole’s logic are explored. It pointed out that mathematical basis system was research in field linear differential equations. Moreover, pioneering discoveries were based on arbitrary methodological assumptions not directly related mathematics. Some original psychological theory mind, its philosophy mathematics, which presupposes existence a universal calculus, some provisions Immanuel Kant’s logico-philosophical doctrine should recognized such assumptions.
منابع مشابه
The Calculus of Logic
In a work lately published I have exhibited the application of a new and peculiar form of Mathematics to the expression of the operations of the mind in reasoning. In the present essay I design to offer such an account of a portion of this treatise as may furnish a correct view of the nature of the system developed. I shall endeavour to state distinctly those positions in which its characterist...
متن کاملGeorge WEAVER COMPACTNESS IN EQUATIONAL LOGIC
tary equational logics are generalized and formulated as properties of infinitary equational logics and it is shown that these properties are coextensive. The central construction of the paper is derived from a model theoretic proof of the consequence version of the compactness theorem: if an equation is a consequence of a set of equations S, then it is a consequence of some finite subset of S....
متن کاملModal Calculus of Illocutionary Logic
The aim of illocutionary logic is to explain how context can affect the meaning of certain special kinds of performative utterances. Recall that performative utterances are understood as follows: a speaker performs the illocutionary act (e.g. act of assertion, of conjecture, of promise) with the illocutionary force (resp. assertion, conjecture, promise) named by an appropriate performative verb...
متن کاملCombinatory Logic and - Calculus for Classical Logic
Since Gri n's work in 1990, classical logic has been an attractive target for extracting computational contents. However, the classical principle used in Gri n's type system is the double-negation-elimination rule, which prevents one to analyze the intuitionistic part and the purely classical part separately. By formulating a calculus with J (for the elimination rule of falsehood) and P (for Pe...
متن کاملSituation Calculus and Causal Logic
In the AAAI-97 paper by McCain and Turner, the frame problem is solved using a nonmonotonic causal logic. In this note we show how their method can be adapted to the language of the situation calculus. The \causal situation calculus" is applied to action domains involving ramiications and nondeterminism, and related to the causal formalization of actions proposed by Lin.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ??????-??????????? ??????
سال: 2021
ISSN: ['2071-9183', '2223-3954']
DOI: https://doi.org/10.52119/lphs.2021.55.34.004